
International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

E-ISSN: 2321-9637

43

Literature Survey on Quality Analysis and
Code Duplication on Web Applications

M.Mani Mekalai

Department of computer science Sri Krishna Arts and Science College
Email: manimekalai.m.v.a@gmail.com

Abstract - We propose an approach to Analysis of modern web applications and detect duplicated blocks of
code to quality improvement and specification in Web sites and on the analysis of both the page structure,
implemented by specific sequences of HTML tags, and the displayed content. In addition, for each pair of
dynamic pages we also consider the similarity degree of their scripting code. The similarity degree of two pages
is computed using different similarity metrics for the different parts of a web page based on the code duplication
string edit distance. We have implemented a prototype to automate the duplicate detection process on web
applications developed using technology and used it to validate our approach in a case study.

Index Terms - Code refactoring, prototype implementation, reengineering, trustworthiness and cocitation
degree

1. INTRODUCTION

 Code refactoring are similar program structures
of considerable size and significant similarity.
Several studies suggest that as much as 20-50
percent of large software systems consist of cloned
code. Knowing the location of clones helps in
program understanding and maintenance. Some
clones can be removed with refactoring, by
replacing them with function calls or macros, or we
can use unconventional metalevel techniques such
as Aspect-Oriented Programming or XVCL to
avoid the harmful effects of clones.

 Refactoring is an active area of research, with

a multitude of refactoring detection techniques
been proposed in the literature. One limitation of
the current research on code clones is that it is
mostly focused on the fragments of duplicated code
(we call them simple clones), and not looking at the
big picture where these fragments of duplicated
code are possibly part of a bigger replicated
program structure. We call these larger granularity
similarities structural clones. Locating structural
clones can help us see the forest from the trees, and
have significant value for program understanding,
evolution, reuse, and reengineering.

 Refactoring tools produce an

overwhelming volume of simple refactoring’ data
that is difficult to analyze in order to find useful
clones. This problem Prompted different solutions

 that are related to our idea of detecting structural

clones. Some clone detection approaches target
large-granularity clones such as similar files,
without specifying the details of the low-level
similarities contained inside them. For example, the
authors consider a whole webpage as a “clone” of
another page if the two pages are similar beyond a
given threshold, computed as the Levenshtein
distance. Without the details of the low-level
similarities in the large-granularity clones, it is not
always straightforward to take remedial actions
such as refactoring or creating generic
representation, as these actions require a detailed
analysis of low-level similarities.

 Moreover, Clone Miner goes a step ahead in

clone analysis, by looking at the bigger similarity
structures consisting of groups of such highly
similar files. In contrast, Gemini determines the
similarity between pairs of files based on file
coverage by the common simple clones, as detected
by CCFinder. However, Gemini does not go as far
as to identify explicitly the files as clones of each
other but only provides a similarity value. Another
limitation of these tools in terms of identifying file
level similarities is that only pairs of files are
compared rather than finding groups of similar
files, as found by Clone Miner.

 In Clone Miner, not only do we identify

complete sets of large-granularity clones, such as

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

E-ISSN: 2321-9637

44

groups of similar files, methods, and directories,
but we also provide all the low-level similarity
details that are necessary for refactoring or creating
generic representations to unify these similarities.
Rieger’s idea of “clone class families”, where clone
sets are grouped together based on their location, is
the same as a level 2-B structural clone detected by
Clone Miner. Kapser and Godfrey have also
explored the idea of linking simple clones with the
system architecture. The work of De Lucia et al.
Involves detecting web specific types of structural
clones, where a clone consists of several WebPages
linked by hyperlinks. A graph-based pattern-
matching algorithm is used for identifying this type
of clones.

 2. RELATED WORK

 Code duplicates are similar program

structures of considerable size and significant
similarity. Several studies suggest that as much as
20-50 percent of large software systems consist of
duplicated code. Knowing the location of
duplicates helps in program understanding and
maintenance. Some duplicates can be removed with
refactoring, by replacing them with function calls
or macros, or we can use unconventional metalevel
techniques such as Aspect-Oriented Programming
or XVCL to avoid the harmful effects of duplicates.
Cloning is an active area of research, with a
multitude of duplicate detection techniques been
proposed in the literature. One limitation of the
current research on code duplicates is that it is
mostly focused on the fragments of duplicated code
(we call them simple duplicates), and not looking at
the big picture where these fragments of duplicated
code are possibly part of a bigger replicated
program structure. We call these larger granularity
similarities structural duplicates. Locating
structural duplicates can help us see the forest from
the trees, and have significant value for program
understanding, evolution, reuse, and reengineering

 An important characteristic of pages belonging

to the same Website is that such pages share the
same template since they are encoded in a
consistent manner across all the pages. In other
words, these pages are generated with a predefined
template by plugging data values. In practice,
template pages can also occur in surface Web (with
static hyperlinks). For example, commercial
Websites often have a template for displaying

company logos, browsing menus, and copyright
announcements, such that all pages of the same
Website look consistent and designed. In addition,
templates can also be used to render a list of
records to show objects of the same kind. Thus,
information extraction from template pages can be
applied in many situations. What’s so special with
template pages is that the extraction targets for
template WebPages are almost equal o the data
values embedded during page generation. Thus,
there is no need to annotate the WebPages for
extraction targets as in nontemplate page
information extraction and the key to automatic
extraction depends on whether we can deduce the
template automatically.

 3. LITERATURE SURVEY

 A code clone is a code portion in source files

that is identical or similar to another. It is common
opinion that code clones make the source files very
hard to modify consistently. Clones are introduced
for various reasons such as lack of a good design,
fuzzy requirements, undisciplined maintenance and
evolution, lack of suitable reuse mechanisms, and
reusing code by copy-and-paste. Thus, code clone
detection can effectively support the improvement
of the quality of a software system during software
maintenance and evolution.

 The Internet and World Wide Web diffusion
are producing a substantial increase in the demand
of web sites and web applications. The very short
time-to-market of a web application, and the lack
of method for developing it, promote an
incremental development fashion where new pages
are usually obtained reusing (i.e. “cloning”) pieces
of existing pages without adequate documentation
about these code duplications and redundancies.
The presence of clones increase system complexity
and the effort to testing and refactoring , maintain
and evolve web systems, thus the identification of
clones may reduce the effort devoted to these
activities as well as to facilitate the migration to
different architectures.This project proposes an
approach for detecting clones in web sites and web
applications, obtained tailoring the existing
methods to detect clones in traditional software
systems. The approach has been assessed
performing analysis on several web sites and web
applications.

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

E-ISSN: 2321-9637

45

 Maintaining software systems is getting more
complex and difficult task, as the scale becomes
larger. It is generally said that code clone is one of
the factors that make software maintenance
difficult. This project also develops a maintenance
support environment, which visualizes the code
clone information and also overcomes the
limitation of existing tools. Generally speaking,
templates, as a common model for all pages, occur
quite fixed as opposed to data values which vary
across pages. Finding such a common template
requires multiple pages or a single page containing
multiple records as input. When multiple pages are
given, the extraction target aims at page-wide
information. When single pages are given, the
extraction target is usually constrained to record
wide information, which involves the addition issue
of record-boundary detection. Page-level extraction
tasks, although do not involve the addition problem
of boundary detection, are much more complicated
than record-level extraction tasks since more data
are concerned. A common technique that is used to
find template is alignment: either string or tree
alignment. As for the problem of distinguishing
template and data, most approaches assume that
HTML tags are part of the template, while EXALG
considers a general model where word tokens can
also be part of the template and tag tokens can also
be data. However, EXALG’s approach, without
explicit use of alignment, produces many
accidental equivalent classes, making the
reconstruction of the schema not complete.

 Application domain design technique or mental
templates used by programmers. Similar design
solutions are repeatedly applied to solve similar
problems. These solutions are usually copied from
the existing code. Architecture- centric and pattern-
driven development encouraged by modern
component platforms, such as .NET and J2EE,
leads to standardized, highly uniform, and similar
design solutions. For example, process flows and
interfaces of the components within the system
may be similar, resulting in file or method-level
structural clones. Another likely cause of this
higher-level similarity can be the “feature
combinatory problem”. Much cloning is found in
system variants that originate from a common base
of code during evolution. Often created by massive
copying and modifying of program files, clones—
small and large—are bound to occur in such system
variants. Software Product Line approach aims at

reuse across families of similar systems, reuse only
what is similar, knowing clones helps in
reengineering of legacy systems for reuse.

 Detection of large-granularity structural

clones becomes particularly useful in the reuse
context. While the knowledge of structural clones
is usually evident at the time of their creation, we
lack formal means to make the presence of
structural clones visible in software, other than
using external documentation or naming
conventions. The knowledge of differences among
structural clone instances is implicit too, and can be
easily lost during subsequent software development
and evolution. The limitation of considering only
simple clones is known in the field. The main
problem is the huge number of simple clones
typically reported by clone detection tools. There
have been a number of attempts to move beyond
the raw data of simple clones. It has been proposed
to apply classification, filtering, visualization, and
navigation to help the user make sense of the
cloning information. Another way is to detect
clones of larger granularity than code fragments.
For example, some clone detectors can detect
cloned files, while others target detecting purely
conceptual similarities using information retrieval
methods rather than detecting simple clones. The
approach described in this paper is also based on
the idea of applying a follow-up analysis to simple
clones’ data. We observed that at the core of the
structural clones, often there are simple clones that
coexist and relate to each other in certain ways.
This observation formed the basis of our work on
defining and detecting structural clones. From this
observation, we proposed a technique to detect
some specific types of structural clones from the
repeated combinations of collocated simple clones.
We implemented the structural clone detection
technique in a tool called Clone Miner,
implemented in C++. Clone Miner has its own
token-based simple clone detector [6]. Our
structural clone detection technique works with the
information of simple clones, which may come
from any clone detection tool. It only requires the
knowledge of simple clone sets and the location of
their instances in programs.

 3.1 Extracting Structured Data from Web Pages

 Many web sites contain large sets of

pages generated using a common template or

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

E-ISSN: 2321-9637

46

layout. For example, Amazon lays out the author,
title, comments, etc. in the same way in all its book
pages. The values used to generate the pages (e.g.,
the author, title,...) typically come from a database.
In this paper, we study the problem of
automatically extracting the database values from
such template generated web pages without any
learning examples or other similar human input.
We formally define a template, and propose a
model that describes how values are encoded into
pages using a template. We present an algorithm
that takes, as input, a set of template-generated
pages, deduces the unknown template used to
generate the pages, and extracts, as output, the
values encoded in the pages. Experimental
evaluation on a large number of real input page
collections indicates that our algorithm correctly
extracts data in most cases.

 3.2 Information Extraction Based on Pattern

Discovery

 The research in information extraction (IE)

regards the generation of wrappers that can extract
particular information from semistructured Web
documents. Similar to compiler generation, the
extractor is actually a driver program, which is
accompanied with the generated extraction rule.
Previous work in this field aims to learn extraction
rules from users’ training example. In this paper,
we propose IEPAD, a system that automatically
discovers extraction rules from Web pages. The
system can automatically identify record boundary
by repeated pattern mining and multiple sequence
alignment. The discovery of repeated patterns is
realized through a data structure call PAT trees.
Additionally, repeated patterns are further extended
by pattern alignment to comprehend all record
instances. This new track to IE involves no human
effort and content- dependent heuristics.
Experimental results show that the constructed
extraction rules can achieve 97 percent extraction
over fourteen popular search engines.

 Recently, researchers are exploring new

approaches to fully automate wrapper construction.
That is, without users’ training examples. For
example, Embley et al. describe a heuristic
approach to discover record boundaries in Web
documents by identifying candidate separator tags
using five independent heuristics and selecting a
consensus separator tag based on a heuristic

combination . However, one serious problem in this
one-tag separator approach arises when the
separator tag is used elsewhere among a record
other than the boundary. On the other hand, our
work here attempts to eliminate human intervention
by pattern mining. The motivation is from the
observation that useful information in a Web page
is often placed in a structure having a particular
alignment and order. Particularly, Web pages
produced by search engines generally present
search results in regular and repetitive patterns.
Mining repetitive patterns, therefore, may discover
the extraction rules for wrappers.

 3.3 A Survey of Web Information Extraction

Systems

 The Internet presents a huge amount of useful

information which is usually formatted for its
users, which makes it difficult to extract relevant
data from various sources. Therefore, the
availability of robust, flexible Information
Extraction (IE) systems that transform the Web
pages into program-friendly structures such as a
relational database will become a great necessity.
Although many approaches for data extraction
from Web pages have been developed, there has
been limited effort to compare such tools.
Unfortunately, in only a few cases can the results
generated by distinct tools be directly compared
since the addressed extraction tasks are different.
This paper surveys the major Web data extraction
approaches and compares them in three
dimensions: the task domain, the automation
degree, and the techniques used. The criteria of the
first dimension explain why an IE system fails to
handle some Web sites of particular structures. The
criteria of the second dimension classify IE systems
based on the techniques used. The criteria of the
third dimension measure the degree of automation
for IE systems. We believe these criteria provide
qualitatively measures to evaluate various IE
approaches.

 First, the distinction of free text IE and online

documents made by Muslea, the three-level of
extraction tasks proposed by Sarawagi, and the
capabilities of handling non-HTML sources,
together suggest the first dimension, which
concerns the difficulty or the task domain that an
IE task refers to. Second, the taxonomy of regular
expression rules or Prolog-like logic rules, and that

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

E-ISSN: 2321-9637

47

of deterministic finite-state transducer or
probabilistic hidden Markov models, prompts the
second dimension which relates the underlying
techniques used in IE systems. Finally, the
categorizations of programmer-involved, learning
based or annotation-free approaches imply the third
dimension which concerns the degree of
automation.

 3.4 Generating Finite-State Transducers For
Semi-Structured Data Extraction From The Web

 Integrating a large number of Web information
sources may significantly increase the utility of the
World-Wide Web. A promising solution to the
integration is through the use of a Web Information
mediator that provides seamless, transparent access
for the clients. Information mediators need
wrappers to access a Web source as a structured
database, but building wrappers by hand is
impractical. Previous work on wrapper induction is
too restrictive to handle a large number of Web
pages that contain tuples with missing attributes,
multiple values, variant attribute permutations,
exceptions and typos. This paper presents
SoftMealy, a novel wrapper representation
formalism. This representation is based on a finite-
state transducer (FST) and contextual rules. This
approach can wrap a wide range of semistructured
Web pages because FSTs can encode each different
attribute permutation as a path. A SoftMealy
wrapper can be induced from a handful of labeled
examples using our generalization algorithm

 4 .EXISTING SYSTEM

 Refactoring is a transformation that preserves the

external behavior of a program and improves its
internal quality. Usually, compilation errors and
behavioral changes are avoided by preconditions
determined for each refactoring transformation.
However, to formally define these preconditions
and transfer them to program checks is a rather
complex task. In practice, refactoring engine
developers commonly implement refactorings in an
ad hoc manner since no guidelines are available for
evaluating the correctness of refactoring
implementations. As a result, even mainstream
refactoring engines contain critical bugs. We
present a technique to test Java refactoring engines.
It automates test input generation by using a Java
program generator that exhaustively generates

programs for a given scope of Java declarations.
The refactoring under test is applied to each
generated program. The technique uses
SafeRefactor, a tool for detecting behavioral
changes, as an oracle to evaluate the correctness of
these transformations. Finally, the technique
classifies the failing transformations by the kind of
behavioral change or compilation error introduced
by them. We have evaluated this technique by
testing 29 refactorings in Eclipse JDT, NetBeans,
and the JastAdd Refactoring Tools. We analyzed
153,444 transformations, and identified 57 bugs
related to compilation errors, and 63 bugs related to
behavioral changes.

 5. PROPOSED SYSTEM

 A code analysis is a code portion in source files

that is identical or similar to another. It is common
opinion that code duplicates make the source files
very hard to modify consistently. Duplicates are
introduced for various reasons such as lack of a
good design, fuzzy requirements, undisciplined
maintenance and evolution, lack of suitable reuse
mechanisms, and reusing code by copy-and-paste.

 Thus, code duplicate detection can effectively
support the improvement of the quality of a
software system during software maintenance and
evolution.The Internet and World Wide Web
diffusion are producing a substantial increase in the
demand of web sites and web applications. The
very short time-to-market of a web application, and
the lack of method for developing it, promote an
incremental development fashion where new pages
are usually obtained reusing (i.e. “cloning”) pieces
of existing pages without adequate documentation
about these code duplications and redundancies.
The presence of duplicates increase system
complexity and the effort to test, maintain and
evolve web systems, thus the identification of
duplicates may reduce the effort devoted to these
activities as well as to facilitate the migration to
different architectures. This project proposes an
approach for detecting duplicates in web sites and
web applications, obtained tailoring the existing
methods to detect duplicates in traditional software
systems. The approach has been assessed
performing analysis on several web sites and web
applications. Maintaining software systems is
getting more complex and difficult task, as the
scale becomes larger. It is generally said that code

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

E-ISSN: 2321-9637

48

duplicate is one of the factors that make software
Maintenance difficult. This project also develops a
maintenance support environment, which visualizes
the code duplicate information and also overcomes
the limitation of existing tools.

 6. OUR APPROACH

 6.1 Extended Cocitation algorithm It is a Cocitation algorithm that extends the traditional Cocitation concepts. The Cocitation analysis has b

 Then number of documents that cite both
p and q is referred to as the cocitation degree of
documents p and q. The similarity between two
documents is measured by their cocitation degree.
This type of analysis has been shown to be
effective in a broad range of disciplines, ranging
from author cocitation analysis of scientific sub
fields to journal cocitation analysis. In the context
of the web, the hyperlinks are regarded as citations
between the pages. If a web page p has a hyperlink
to another page q, page q is said to be cited by page
p. In this sense, citation and cocitation analyses are
smoothly extended to the web page hyperlink
analysis.

 The extended cocitation algorithm is presented

with a new page source. It is constructed as a
directed graph with edges indicating hyperlinks and
nodes representing the following pages.

• page u
• Up to B parent pages of u and up to BF child

pages of each parent page that are different
from u

• Up to F child pages of u and up to FB parent
pages of each child page that are different from
u

 The parameters B, BF, and FB are used to keep

the page source to a reasonable size. Before giving
the Extended Cocitation algorithm for finding
relevant pages, the following concepts are defined

 6.2 Truth Finder Algorithm

 We can infer the website trustworthiness if
we know the fact confidence and vice versa. As in
Authority-Hub analysis and Page Rank,
TRUTHFINDER adopts an iterative method to
compute the trustworthiness of websites and
confidence of facts. Initially, it has very little

information about the websites and the facts. At
each iteration, TRUTHFINDER tries to improve its
knowledge about their trustworthiness and
confidence, and it stops when the computation
reaches a stable state. As in other iterative
approaches TRUTHFINDER needs an initial state.
We choose the initial state in which all websites

 have uniform trustworthiness t0. (t0 should be set
to the estimated average trustworthiness, such as
0.9.) From the website trustworthiness
TRUTHFINDER can infer the confidence of facts,
which are very meaningful because the facts
supported by many websites are more likely to be
correct. On the other hand, if we start from a
uniform fact confidence, we cannot infer
meaningful trustworthiness for websites. Before the
iterative computation, we also need to calculate the
two matrices A and B, as defined.

 They are calculated once and used at every
iteration. In each step of the iterative procedure,
TRUTHFINDER first uses the website
trustworthiness to compute the fact confidence and
then recomputed the website trustworthiness from
the fact confidence. Each step only requires two
matrix operations and Conversions between tðwÞ
and _ðwÞ and between sðfÞ and __ðfÞ. The
matrices are stored in sparse formats, and the
computational cost of multiplying such a matrix
and a vector is linear with the number of nonzero
entries in the matrix. TRUTHFINDER stops
iterating when it reaches a stable state. The
stableness is measured by how much the
trustworthiness of websites changes between
iterations. If t(w) ! Only changes a little after an
iteration (measured by cosine similarity between
the old and the new t(w), then TRUTHFINDER
will stop.

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

E-ISSN: 2321-9637

49

Figure 1: Truth Finder Algorithm

 7. CONCLUSION

 The over all studies in the existing system
results in a problem that it is only used to measure
the code quality in the desktop application that has
static codes. This system is not applicable for
today’s fast growing websites and web
application. The other drawback over the existing
system is that it can’t measures the dynamic code

 REFERENCES

 quality of applications so our approach is to

propose a system that able to Measure the quality
of both dynamic and static code in the web
applications

 Since our proposed system is towards
implementation, I will present it in the future
enhancement.

 [1] A. Arasu and H. Garcia-Molina, “Extracting
Structured Data from Web Pages,” Proc. ACM
SIGMOD, pp. 337-348, 2003.

[2] C.-H. Chang and S.-C. Lui, “IEPAD:
Information Extraction Based on Pattern
Discovery,” Proc. Int’l Conf. World Wide Web
(WWW-10), pp. 223-231, 2001.

[3] C.-H. Chang, M. Kayed, M.R. Girgis, and K.A.
Shaalan, “Survey of Web Information
Extraction Systems,” IEEE Trans. Knowledge
and Data Eng., vol. 18, no. 10, pp. 1411-1428,
Oct. 2006.

[4] V. Crescenzi, G. Mecca, and P. Merialdo,
“Knowledge and Data Engineerings,” Proc.
Int’l Conf. Very Large Databases (VLDB), pp.
109-118, 2001.

[5] C.-N. Hsu and M. Dung, “Generating Finite-
State Transducers for Semi-Structured

 Data Extraction from the Web,” J. Information
Systems, vol. 23, no. 8, pp. 521-538, 1998.

[6] N. Kushmerick, D. Weld, and R. Doorenbos,
“Wrapper Induction for Information
Extraction,” Proc. 15th Int’l Joint Conf.
Artificial Intelligence (IJCAI), pp. 729-735,
1997.

[7] A.H.F. Laender, B.A. Ribeiro-Neto, A.S. Silva,
and J.S. Teixeira, “A Brief Survey of Web
Data Extraction Tools,” SIGMOD Record, vol.
31, no. 2, pp. 84-93, 2002.

[8] B. Lib, R. Grossman, and Y. Zhai, “Mining
Data Records in Web pages,” Proc. Int’l Conf.
Knowledge Discovery and Data Mining
(KDD), pp. 601-606, 2003.

[9] I. Muslea, S. Minton, and C. Knoblock, “A
Hierarchical Approach to Wrapper Induction,”

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

E-ISSN: 2321-9637

50

Proc. Third Int’l Conf. Autonomous Agents
(AA ’99), 1999.

10] K. Simon and G. Lausen, “ViPER:
Augmenting Automatic Information Extraction
with Visual Perceptions,” Proc. Int’l Conf.
Information and Knowledge Management
(CIKM), 2005.

[11] J. Wang and F.H. Lochovsky, “Data
Extraction and Label Assignment for Web
Databases,” Proc. Int’l Conf. World Wide Web
(WWW-12), pp. 187-196, 2003.

[12] Y. Yamada, N. Craswell, T. Nakatoh, and S.
Hirokawa, “Testbed for Information
Extraction from Deep Web,” Proc. Int’l Conf.

World Wide Web (WWW-13), pp. 346-347, 2004.
[13] W. Yang, “Identifying Syntactic Differences

between Two Programs,” Software—Practice
and Experience, vol. 21, no. 7, pp. 739- 755,
1991.

[14] Y. Zhai and B. Liu, “Web Data Extraction
Based on Partial Tree Alignment,” Proc. Int’l
Conf. World Wide Web (WWW-14), pp. 76-
85, 2005.

[15] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and
C. Yu, “Fully Automatic Wrapper Generation
for Search Engines,” Proc. Int’l Conf. World
Wide Web (WWW), 2005.

[16] Aversano, L., Canfora, G., De Lucia, A., and
Gallucci, P., 2001. Web Site Reuse: Cloning
and Adapting. Proc. Of 3rd International
Workshop on Web Site Evolution, Florence,
Italy, IEEE CS Press, pp. 107-111

[17] De Lucia, A., Scanniello, G., and Tortora, G.,
2004."Identifying Clones in Dynamic Web
Sites Using Similarity Thresholds," Proc. Intl.
Conf. on Enterprise Information Systems
(ICEIS'04), pp.391-396.

[18] Di Lucca, G. A., Di Penta, M., Fasilio, A. R.,
and Granato, P., 2001. “Clone analysis in the
web era: An approach to identify cloned web
pages,” Seventh IEEE Workshop on Empirical
Studies of Software Maintenance (WESS), pp.
107–113.

[19] Di Lucca, G. A., Di Penta, M., and Fasolino,
A. R., 2002. An Approach to Identify
Duplicated Web Pages. Proc. of 26th Annual
International Computer Software and
Application Conference (COMPSAC’02),
Oxford, UK, IEEE CS Press, pp. 481-486.

[20] Kamiya, T., Kusumoto, S., and Inoue, K.,
2002. CCFinder: A Multilinguistic Token-

Based Code Clone Detection System for Large
Scale Source Code. IEEE Transactions on
Software Engineering, 28(7), pp. 654-670.

[21] Kapser, C., and Godfrey, M. W., 2003
“Toward a taxonomy of clones in source code:
A case study,” In Evolution of Large Scale
Industrial Software Architectures, 2003.

[22] Lanubile, F. and Mallardo, T., 2003. Finding
Function Clones in Web Application. In Proc.
of 7thEuropean Conference on Software
Maintenance and Reengineering, Benevento,
Italy, IEEE CS Press,pp. 379-386.

[23] Marcus, A., and Maletic, J. I., 2001,
“Identification of High-Level Concept Clones
in Source Code,” Proc. Automated Software
Engineering, pp. 107-114.

[24] Ricca, F. and Tonella, P., 2003. Using
Clustering to Support the Migration from
Static to Dynamic Web Pages. Proc. of 11th
International Workshop on Program
Comprehension, Portland, Oregon, IEEE CS
Press, pp. 207-216

AUTHOR

Author’s Name: M.Mani mekalai, BCA
from Dr.SNS college of arts and science,
master of information technology from
bharathiar university and currently
pursuing mphil (cs) in Sri Krishna arts and
science college Under the guidance of Mrs
S.Rajanandini, Asst. Professor, SKASC

Email.id:manimekalai.m.v.a@gmail.com

